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Abstract

Invasive pests pose a growing threat to global ecosystems. Current invasion risk models rarely quantify
multiple species-specific drivers for the worldwide spread of transboundary pests. We propose a global
invasion risk assessment framework (GIRAF) which explicitly quantifies, integrates, and maps species-
specific geographic risk factors — multi-host landscapes, abiotic factors, trade networks of agricultural
commodities, port accessibility, and international biosecurity policies. We applied GIRAF to assess potential
scenarios for the introduction, establishment, and spread of invasive pests —Phthorimaea absoluta, Ralstonia
solanacearum, tomato brown rugose fruit virus, and potato spindle tuber viroid. We found that host
communities for each pest occupy ~22-37% of Earth's land surface, with Europe and Southeast Asia
providing a highly suitable environment. The USA ranked among the top five countries with a high trade-
mediated (re)introduction potential for each pest. GIRAF provides key starting points for proactive
surveillance prioritization and geographic mitigation against the potential spread of invasive pests, supporting
transnational biosecurity agencies and global food industries.
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Teaser

Integrated spatial risk assessments can improve proactive surveillance for invasive species.

1. Introduction

Invasive species are an increasing challenge to ecosystems worldwide. Effective invasive species
management is inherently a key component of sustainable plant ecosystems aiming to contribute to the UN
Sustainable Development Goals (SDGs), particularly those oriented towards agricultural productivity, food
security, human livelihoods, and ecosystem health (7, 2). Solely attaining agricultural sustainability on a local and
global scale requires a substantial decline in the estimated 10-40% crop yield loss caused by new and re-emerging
diseases and pests (3). Unchecked outbreaks of plant diseases and pests can inflict substantial impacts on global
food baskets, international markets, plant health, and natural ecosystem functioning (4). Increased globalization
(commodity trade, human transport, and cropland expansion) and climate change drive the unprecedented spread
of invasive pathogens and pests at large scales (5-8). A main goal of proactive responses to this multifaceted
human-driven invasion crisis is to prevent future socioeconomic, political, and ecological impacts if pathogens or
pests expand farther and persist longer in a region (2, 5, 9, 10). An increasingly important component in invasive
species management is integrated risk assessment before and shortly after the initial or repeated introduction of
pathogens and pests in new areas. In the long term, this integrated assessment would anticipate invasive spread,
prepare spatially explicit surveillance strategies, and formulate biosecurity geo-policies as aspired to in the One
Biosecurity perspective (2, 10, 11).

Geographic pest risk analysis provides a general framework to identify most likely locations for pest
introduction, establishment, and spread (/2-16), regularly requiring quantification of risk factors such as host
availability, climate suitability, commodity trade, and human transportation. An integrated assessment of key
geographic risk factors helps appropriately prioritize often-limited resources for active surveillance of invasive
species in agroecosystems, is a fundamental layer of invasion preparedness, and strengthens early warning
systems for invasive pest outbreaks. Integrated risk assessments are increasingly needed owing to the
unprecedented rise in current and future mass biological invasions and crop epidemics worldwide in the 21
century (8, 17, 18). Nevertheless, assessing these risk factors collectively and globally is challenging;
consequently, anticipating the actual spread of an invasive species is highly uncertain and sometimes seems
driven by random chance. High-resolution maps of plant host distribution, detailed information on international
and domestic trade of high-risk commodities, and species-specific environmental requirements are important
information gaps that remain open for many invasives, especially plant pathogens and pests (/, /9-21). Given this
inherent uncertainty, a proactive data-driven approach for explicit quantification of geographic risks of invasive
species is to leverage existing limited geospatial data through general principles from invasion science, disease
epidemiology, pest ecology, and species distribution modeling (22), while assembling better data in publicly
accessible platforms in the digital era (10, 23). Currently, expert opinion is the traditional (sometimes the only
feasible) option when evaluating the national risk of an invasive pest in the immediate term (16, 24, 25).
Hundreds of quick risk assessments are available for specific countries (12, 16, 24), but they represent a tiny
fraction of an increasing number of pests affecting plants globally (/8). Research over the last three decades has
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led to an increasingly better understanding of individual geographic drivers of pest invasions (10, 12-15, 22, 26,
27). Nevertheless, available frameworks are rarely applied to integrate multiple species-specific drivers of
invasive pest spread across geographic scales. Here, our goal is to provide a new, integrated risk assessment
framework (GIRAF 1.0) evaluating possible scenarios for spatial spread of invasive pests (Fig. 1). GIRAF
harnesses advances in knowledge about invasions into a quantitative use-inspired approach and can be applied as
a data-driven foundation complementary to expert assessment. GIRAF explicitly integrates common geographic
risk factors underlying the most likely paths for spatial spread of invasive pest species, mapping their potential
geographic distribution, and identifying candidate priority locations as a critical component of global surveillance
strategies (7, 11).
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Fig. 1. The proposed global multicriteria framework of invasion risk assesses four of the five fundamental drivers of invasive

species spread (environmental suitability, host availability, international trade including seed exchange, local transportation such as
access to cities, but no wind patterns yet). GIRAF comprises four major components: integration of data sources (public datasets and
expert-assembled datasets), decision-making on variable inclusion, assembly and selection of models, and spatial predictions of invasion
risk (boxes in yellow, orange and red). Of course, GIRAF is subject to the GIGO axiom (garbage in, garbage out), where the quality of
outputs is only as good as the quality of the input data. No single database used here is bias-free (see Methods for full name of datasets).
In GIRAF, expert evaluation is needed in each component, from data input to model selection, parameter choices, and risk factor
importance. Pest and disease prioritization is an expert-driven process external to this framework (15)[Note S1]. This framework’s
primary goal is to provide species-specific invasion risk maps for (pro)active surveillance and risk mitigation over a contemporary time
horizon. The multiscale lens indicates that GIRAF is applied across geographic scales, from global to local.
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As a pilot application of GIRAF, our first objective is to assess the global risk posed by four economically
important invasive pests: the South American tomato leafminer (Phthorimaea absoluta), Ralstonia solanacearum
phylotype IIB sequevar 1 (RSIIB-1 hereafter; former assignation “Ralstonia solanacearum race 3 biovar 27),
tomato brown rugose fruit virus (Tobamovirus fructirugosum; ToBRFV hereafter), and potato spindle tuber viroid
(Pospiviroid fusituberis; PSTVd hereafter). Specifically, we assessed four geographic risk factors expected to
promote the potential spread of these and many other invasive species and their establishment risk in new suitable
habitat regions: (i) international trade of high-risk agricultural commodities, (ii) cropland accessibility to ports and
cities as potential introduction points, (iii) host landscape connectivity, and (iv) spatial projections based on the
species’ environmental suitability (Fig. 1). Mapping international trade of agricultural commodities — along with
cropland accessibility to ports and cities — points out which locations may serve as critical entry points for initial
or repeated introductions if a targeted pest or infected vectors inadvertently trespass international borders and
successfully overcome biosecurity boundaries (28-317). Once a pest is introduced into a new area, host landscape
connectivity indicates local spread potential of pests based on host availability and dispersal opportunities
between host areas (32-34). Likewise, measures based on prevailing climate or edaphic variables indicate which
locations in a host landscape are more environmentally suitable for establishment and local spread of an invasive
pest (35, 36). Together with wind patterns and human transportation networks (not implemented directly in
GIRAF1.0) (25, 27, 36), these are the main geographic habitat factors facilitating pest invasion and epidemic risk
in global plant ecosystems (12, 37, 38).

These four transboundary pests have wreaked havoc on solanaceous crops and ornamental industries, with
devastating impacts on plant health globally, and possibly affecting natural plant ecosystems. The global value of
solanaceous crops (peppers, potatoes, and tomatoes) jointly accounted for US$296 billion in production and
US§$38 billion in international trade in 2022 (39), making them key for food security, income generation, and
livelihoods. Over the past century, transcontinental and transoceanic range expansion of these targeted pests on
multi-species host landscapes exemplifies both large-scale and local invasions of global ecosystems dominated by
large, cultivated plant populations (Fig. S1-4). Reconstructing biogeographic dynamics of these pests belonging to
four taxonomically distant groups enabled us to identify which ecological scenarios are frequently plausible in
pest invasions. Applying GIRAF on these globally concerned pests allowed us to keep a balance between general
invasion dynamics by considering common drivers of species spread (5, 37) and idiosyncratic ecological niche
differences among invasive species, such as host diversity, and dispersal pathways (/0)[Note S1-2]. Although this
article focuses on these invasives as real-world case studies, GIRAF has practical and cross-disciplinary relevance
beyond these studied systems, provided minimal data input is available to reproduce the geographic risk analysis
for the invasion of a target plant, animal, or microbial taxa. GIRAF also has multiscale lens (Fig. 1) supporting
invasion risk assessments at smaller geographic extents and finer spatial resolutions. Our second objective is to
apply GIRAF to understand local invasion risk of the same target pests in Florida and surrounding areas,
including Alabama, Georgia, and South Carolina.

Materials and methods

GIRAF relies on four fundamental components, which are not mutually exclusive: (i) defining ecologically or
epidemiologically important risk factors, (ii) collecting or compiling fine- or broad-scale data related to these risk
factors, like dispersal pathways, species geographic occurrence, and host range, (iii) selecting and (re)training the
model(s) based on digitally accessible information, and (iv) generating evidence-based maps of potential priorities



140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173

174
175
176
177
178
179

for surveillance and mitigation. Risk analysts, policymakers, and biosecurity practitioners can provide periodic
feedback on each component’s input and iteratively fine-tune the resulting spatial projections of pest invasion
risk, particularly if relevant information like informal trade of agricultural commodities is privately or unofficially
documented.

Data assembly for ecologically important species traits. We built (i) a geographic distribution spreadsheet
including the reported countrywide extent of each pest species, the earliest year of the pest collection or detection
in the country, the first year of the country report publication, and georeferenced presence records wherever
available; and (ii) a host-parasite association list including plant species naturally or experimentally infected by
the pathogen or infested by the pest, and the reported countries of these associations (Data S1). These
spreadsheets represent a comprehensive data compilation based on publicly available reports until 2023 including
journal articles and official reports by National Plant Protection Organizations (NPPOs). Despite this extensive
data compilation effort, global systematic sampling or highly standardized reporting exists is rare for these pest
species. While the spread of pests at large spatiotemporal scales cannot always be systematically represented or
studied well by small-scale field and laboratory experiments (40), ‘national- or continental-scale controlled trials’
are certainly not pragmatic or realistic at this time (4/). Alternatively, notwithstanding being systematically
incomplete, geographically biased, and often sampled based on convenience, observational distribution data
serves as a primary source of empirical information for mapping potential spread of invasive pests across broad-
scale crop-growing regions.

For each natural host species listed in the host-parasite association spreadsheet, but unavailable in the
CROPGRIDS dataset (42), we created maps of relative host density. We manually downloaded species-specific
georeferenced occurrence records from the Global Biodiversity Information Facility (GBIF) database on July 5%,
2024 (43-45). In a global map with grid cells of about 2.3 km at the equator (or 1.25-minute spatial resolution),
we assigned each grid cell the square root of the number of presence records of host species, or 0 if there were no
georeferenced records. These global maps represent the geographic distribution of individual plant species at a
relatively high spatial resolution and are expected to be highly biased in places where sampling effort is smaller.
We thus aggregated each map at a ~55 km resolution (i.e., 0.5° per grid cell), calculating the mean grid cell values
at coarse resolution, and expecting to partially reduce sampling bias (44). These maps represent a first
approximation of relative host density; future approaches could train species distribution models to provide better
maps of each host. For cultivated natural host species of each pest, we obtained global maps of crop-specific
harvested areas available in the CROPGRIDS dataset, which are more accurate than maps built from GBIF
records of crop species.

Spatial coverage. Below, each analysis targeted two geographic extents. Global analyses are presented at
0.5° spatial resolution. Each trained model also produced risk maps for each pest focusing on Florida, Alabama,
Georgia, and South Carolina resampled at 3’ spatial resolution.

Mapping invasion risk based on species bioclimatic modelling. We obtained global gridded maps of the 19
bioclimatic variables from CHELSA Bioclim, representing climates for 1989-2013 (46), and of 12 soil properties
from SoilGrids 2.0, representing edaphic conditions at 15-30 ¢cm standard depth (47). We also gathered 13
available maps of physical accessibility of the mainland and islands, representing travel time to ports and cities
(48, 49). Four maps represent accessibility to airports and maritime ports, each aggregated at one of four port
sizes. We assigned individual weights to each port size map because each may have a different degree of
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importance to the entry of commodities and associated pests (Table S1). We then built an overall accessibility
index to ports (A,) as a weighted average of accessibility to individual port sizes. The remaining nine maps
represent accessibility to urban and rural locations, each aggregated at one of nine settlement classes. We assigned
a different weight to each settlement class to calculate a weighted average of overall access to cities (A.) across
the nine settlement classes (Table S2).

We trained four probabilistic machine learning algorithms — MaxEnt, random forest, XGboost, and logistic
regression — which are commonly used for presence-only data (35, 50). Each algorithm represented a correlative
species distribution model (SDM), in which the response variable was 1 for reported georeferenced presence
records and 0 for pseudo-absences (i.e., background points randomly selected from a world land map). Each SDM
was initially trained and evaluated on the following selected predictor variables: annual mean temperature, mean
diurnal range in temperature, isothermality, annual precipitation, precipitation seasonality, chemical soil
properties (pH, and soil organic carbon content), physical soil properties (clay, sand and silt content), port
accessibility (A, ) and city accessibility (A.). These predictors are a subset of all variables available in each
dataset considered, allowing us to avoid multi-collinearity, while still maintaining a substantial variation of
ecologically relevant covariates. These initially trained SDMs indicated A,, as the most important variable

explaining the reported distribution of each invasive species (54%, 27%, 72%, 53% contribution in presence
predictions for PSTVd, RSIIB-1, ToBRFV, and P. absoluta based on MaxEnt, respectively; Data S1). However,
we excluded the contribution of port accessibility in the final predictions by each SDM. Instead, we adopted a
mechanistic approach for analyzing both A, and A along with international trade, and host distribution to

consider explicitly the individual ecologies of each invasive pest (see below).

This multi-model approach was used to generate a global map of ensemble predictions, which equally
weighted the spatial projections of these four SDMs, as a quantitative consensus approximation of abiotic
environmental suitability for each invasive species. These species-presence predictions based on occurrence-
environment associations are an initial and provisional approximation for a species’ environmental suitability
since true mechanistic ecological interactions between abiotic environmental conditions and invasive pest
occurrence have generally not been characterized quantitatively (ecological niche modelling). Importantly, some
locations are likely to have a higher climate suitability than predicted by the ensemble approximation, which will
be discovered as each pest continues invading new environments and geographical spaces. We lack a quantitative
understanding of how edaphic or climate conditions directly restrict or facilitate geographic occurrence and each
stage in the life cycle of these invasive species, which is a prevalent situation for non-vector-transmitted plant
viruses causing infectious diseases (a knowledge gap in plant virus ecology). However, once this ecological
information becomes available, process-based, component-based, or mechanistic models for these pest species
can be preferentially used to explicitly incorporate direct climate effects on pathogen distribution or a species’
physiological response to environmental conditions.

We adjusted our probabilistic bioclimatic ensemble with known environmental parameters for each species
(model calibration). We used Shelford’s law of tolerance to adjust the maps of ensemble predictions of
environmental suitability for Phthorimaea absoluta and RSIIB-1. The law of tolerance states that an organism’s
success is determined by a set of certain minimum, optimum, and maximum environmental conditions (57). Using
this ecological principle, we applied a generalized beta distribution model to project the potential invasion risk as
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a response function dependent on temperature (52, 53). In this thermal niche model, invasion risk (r(T)) depends
on three cardinal temperatures for a species’ population development (Data S10): the minimum temperature
(Tinin), optimum temperature (T ), and maximum temperature (Tp,q,). We used the monthly mean temperature
of each location (T, where x and y refer to geographic coordinates) in the world to estimate pest invasion risk

locally:

Topt—Tmin

T, —Ty, Tx,y—Tmin \Tmax—Topt
T(T) = max 0,< max xy)( X,y mm) 14 )
Tmax_Topt Topt_Tmin

Invasion risk is highest at locations with T, decreases at temperatures higher or lower than T, and
reaches zero beyond critical thermal limits tolerated by a species (below T}y, or above Ty, 4,). This temperature-
driven physiological response is common in arthropods, plants, nematodes, fungi, and bacteria, and applies to P.
absoluta as well as the cold-tolerant RSIIB-1 strains (54-56). Here, cumulative pest invasion risk in a location
over a year is proportional to the sum of r(T) of each month. We regarded climatically unfavorable locations as
those with T; < Tyin OF T; > Tipax» defining geographically possible thermal range frontiers of a species.

Surface water such as rivers may serve as an aquatic habitat for the dissemination, survival, inoculum source,
and evolution of plant pathogens in almost every major taxonomic group (57-59). We incorporated river networks
in GIRAF as a possible plant health risk and a dispersal pathway for RSIIB1. Using the HydroATLAS database
(60), we calculated the mean river water discharge as a relative proxy for the likelihood that RSIIB-1 would
disperse to any climatically suitable location globally. No information was available about the direct effect of
environmental variables on disease risk caused by ToBRFV and PSTVd.

We cross-validated each SDM individually using ten folds and 1000 iterations. The model’s average accuracy
ranged between 0.9 and 0.96, 0.85 and 0.92, 0.83 and 0.98, and 0.61 and 0.73 for MaxEnt, random forest,
XGBoost, and logistic regression. Each algorithm effectively identified an environmental signal for each pest
species that is different from random variation (i.e., accuracy > 50%). Among SDMs, MaxEnt had the highest
accuracy for predicting the occurrence of each pest species. Georeferenced occurrences capture only a fraction of
the reported geographic distribution of each invasive species. We used the country-level distribution without
georeferenced occurrences of an invasive pest as a geographically and statistically separate dataset (test data). We
calculated the number of pixels with > 50% presence likelihood in each country of the test dataset averaged across
SDMs as a performance metric for the ensemble predictions.

Mapping (re)introduction risk based on international trade of crop commodities

As a candidate precursor to developing safe trade strategies, we characterized the structure of trade networks
to identify likely geographic paths of pest spread and the relative risks of locations to each pest species’ potential
initial or repeated introduction(s) (10, 12, 18). Hereafter, we define invasion risk as the relative likelihood that a
pest or pathogen (i.e., hazard) potentially reaches or occurs in a host location (73, 14, 32). In all our analyses, we
used relative indices to estimate the likelihood of spread of an invasive species as approximations for invasion
risk. In the global trade networks, specifically, we quantify the relative likelihood of potential spread of an
invasive species through the international trade of agricultural commodities.
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We gathered information on the trade volume of crop-specific commodities between each pair of countries,
based on bilateral import reports in the World Trade Organization (WTO, https://stats.wto.org/) dataset for 2005-
2019 and Volza (https://www.volza.com/) dataset for 2023. Our proxy for host availability within a country was
the harvested area of crop species reported to be natural major hosts of each pest (Data S1), for crop species
available in the FAOSTAT (https://www.fao.org/faostat/en/#data) dataset. To account for the potential effect of
pest-associated trade policy landscapes, we also obtained information on international biosecurity measures

targeting specific pest species, whenever available. We compiled information on the geographic extent of each
pest within a country (Data S1), based on available reports in CABI Compendium, EPPO Global Database, and
extensive literature scanning. In these international trade networks, nodes represent countries and link weights
indicate the relative potential of pest spread between countries.

We propose the trade index for potential accidental pest movement from an exporting country i to an

importing country j (or T;,;) as a quantitative proxy characterizing pest invasion risk in trade networks. For any
pair of trading countries, 7;_,; combines explicitly and quantitatively the geographic extent of a pest species within

trading countries, the host availability in trading countries, the trade volume of crop-specific commodities
between countries and, whenever available, pest-specific biosecurity measures implemented by trading countries.
Note S1 provides details of the methodological approach, mathematical formulations, theoretical assumptions,
and available datasets used to quantify invasion risk (or 7;,;) through international trade networks. We assumed

that the joint relative chances that none of the exporting countries are likely to introduce the pest species into a
target importing country j is [[%=1(1 — P(7;,-;)), where z is the number of countries exporting a crop-specific
commodity to country j. Finally, we assumed that the joint risk (I;) that the target pest is introduced into a country
from any exporting countries is directly proportional to 1 — [[{=;(1 — P(z;,-;)). Alternatively, we calculated
four network metrics to characterize the potential introduction risk of a pest species to a country (i.e., I;): node in-

strength, betweenness centrality, and eigenvector centrality. These network metrics were important for pest or
pathogen transmission in epidemic network (67-63).

Our geographic risk analysis on the potential (re)introduction of the four invasive species focused on
individual networks of the reported international trade of specific agricultural commodities. For PSTVd, we
analyzed networks of international trade of potato seeds (i.e., potato tubers for 2005-2019) and planting material
of Brugmansia (2023). For RSIIB-1, we evaluated the international trade of potato seeds, tomato fruits, pepper
fruits (2005-2019), and geranium planting materials (2023). For ToBRFV, we built individual networks of
international trade of tomato fruits (2005-2019), tomato seeds, and pepper seeds (2023). For Phthorimaea
absoluta, we assessed the international trade network of tomato fruits (2005-2019). These target commodities are
important for the international dispersal of the pests of interest, given their reported specific association with the
interception of these pest species (Data S1). We also focused the (re)introduction risk analysis on the international
trade of these fresh crop commodities because of their potential higher likelihood in the geographic diffusion of
these invasive pests, excluding processed agricultural products which may have a negligibly reduced risk. Future
risk analyses could include explicit information on other primary dispersal pathways of these invasives in the
longer term, like the international trade of crop-specific seed and ornamental material. Information on the
international trade of crop-specific seeds or planting material over multiple years is publicly unavailable. We
assumed a reduction in the introduction risk by 10% from countries with market access to the United States and
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imposed import biosecurity requirements. The list of countries with pest-specific biosecurity regulations is
available in the 2024 Federal Order for U.S. imports of tomato and pepper seeds for TOBRFV, and the 2023
Federal Order for U.S. imports of tomato fruit for P. absoluta. We also focused on the introduction potential of
each pest species associated with commodity imports to the USA and countries in the Caribbean Region,
providing a regional assessment as a pilot experiment (a global analysis for each pest is available in Fig. S1-2).

We used country-level interception data for each pest species as an “independent” dataset to validate the
(re)introduction risk analysis (Data S9). In the (re)introduction risk analyses, we used this data to determine which
agricultural commodities are likely important for the international spread of each pest (Table S5), but we excluded
a large part of the information about pest interceptions in specific countries (unless they were the only report
available for the presence of a pest in a country). We assessed the precision of the (re)introduction risk analysis,
that is, the ratio between the number of countries where the pest has been intercepted on imported agricultural
commodities and introduction risk was non-zero (true positives) and the number of countries where the pest has
been intercepted on imported agricultural commodities. Our analysis had a precision of 1, including all countries
where the pest has been intercepted (Table S7). Using the Kolmogorov-Smirnov test, we also evaluated whether
countries where the pest has been intercepted have a higher (re)introduction risk than any other countries. The KS
test indicates that there is no statistically higher or lower introduction risk in countries where the pest has been
intercepted (Table S7). As expected, the null hypothesis is supported because we included all the information
available for the geographic distribution of each pest in our analysis. Our interpretation is that pest re-introduction
is possible in most countries importing high-risk commodities, given that pest interceptions occurred in countries
having a range of risk values.

Mapping invasion risk based on accessibility to ports and cities

Ports likely play a pivotal role in the (re)introduction of plant pests to a region as they may serve as primary
entry points of pest-associated agricultural commodities (5, /2). Geographic proximity to ports generally
increases the risk of introducing invasive plants, arthropods, and pathogens (5, 28, 64-66) and our SDMs
indicated a potential major role of access to ports in the geographic distribution of each target pest. We thus
assume that accessibility of croplands to ports or urban areas in a region increases (re)introduction risk of plant
pests. While accessibility of croplands to ports may indicate invasion risk associated with the initial destination of
imported commodities in a country, accessibility of croplands to cities may indicate invasion risk associated with
urban agricultural landscapes and the final destination of commodities (67, 68). Specifically, we hypothesized that
invasion risk associated with accessibility to ports and cities occurs in a pattern analogous to species richness
resulting from species-accumulation models, where the cumulative number of species scales in an exponential
pattern with sample size, area, or intensity (69). In our view, invasion risk of cropland locations in a region

increases nonlinearly with accessibility to ports (4,) following I,, < 1 — exp (—1 /log (Ap)) or with accessibility

to cities (A, ) following I, o 1 — exp(—l/log(Ac)), where [, and I, range from 0 to 1.

For each invasive species, we generated a map combining the joint risk of countries to a pest’s potential
introduction through international trade and the invasion risk given the access of croplands to ports in a country
(Ij X L,). This resulting map aims to disaggregate the accidental introduction risk of pest species via international
trade (I,,) into likely domestic distribution of imported agricultural commodities and their associated pests across

initial entry locations. These maps of invasion risk can be fine-tuned in future geographically explicit evaluations,
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as domestic distribution of commodity trade and local spread of associated pests may vary geographically among
commodity types (28). Information about origin location, ports of entry, and final city destination of imported
agricultural commodities specifically associated with a target pest species is usually publicly unavailable.

Mapping invasion risk based on multi-host landscape connectivity

Our target invasive pests have a multi-species host range, likely constraining their potential distribution in
regions where a host plant is unavailable [biotic filtering] (70), but increasing pest spread risk if susceptible host
populations are homogeneously and densely distributed in the landscape [facilitation effect] (7/-73). Geographic
host distribution is a critical risk factor to account more realistically for biotic interactions in ecological niche
modelling of plant disease (74, 19, 70). We categorized each plant species reported to be naturally infested by a
pest as major or primary host(s) and minor or secondary hosts (Data S2). We assumed that natural secondary host
species play at least a minor role in pest persistence or survival (10, 74). To map the geographic distribution of
multiple natural host species, we used a stacked host distribution modeling approach (/4), summing the relative
density of major host(s) and secondary hosts to produce a global map of cumulative host density for each invasive
pest. In these stacked host maps, we considered the potential minor role of secondary host species in pest invasion
risk and potential spread by multiplying their host densities by a tenth (/2). For crop species being natural host of
a pest species, our analysis included only locations represented by 3-minute cells having > 4 hectares of cropland
(i.e., a host density threshold of ~0.1%), because we assumed a rare-species advantage against density-dependent
diseases in excluded host locations (7). We then aggregated these resulting maps to a coarser spatial resolution
so that each grid cell represented approximately 55.5 km % 55.5 km at the equator.

Using these global maps of cumulative host density as inputs in the geohabnet R package (75), we evaluated
the host landscape connectivity for each pest species as proposed (32). Geohabnet is a component of the R2M
toolbox for rapid risk assessment to support mitigation of pathogens (www.garrettlab.com/r2m). Geohabnet

estimated the relative likelihood of pest movement (o) between host locations i and j using two generic gravity

o \“P
models for species dispersal (76-78): 0, cik c}‘ (111‘13”1 5 5) for the inverse power-law model and 0,,,

(2
cik c}‘e y(111'319-5) for the negative exponential model. In these global dispersal models, potential pest movement

(Oip1 Or 0pe) depends not only on the product of relative abundances of susceptible host species in both locations

(c{‘ c}‘), but also on the probability of a pest moving between host populations given their physical distance (d;;).

Weset k = > to account for potential nonlinear associations between host density and pest invasion risk (79). We

compiled S and y dispersal parameter values that were empirically estimated for a diverse set of plant pathogens
and arthropod pests (Data S2). We used this dataset to calculate each dispersal parameter’s first quartile, mean,
median, and third quartile across pest species, representing a parameter space of highly likely pest spread
scenarios. We evaluated these typical parameter values (0.9, 1.5, 1.7, 2.1 for § and 0.02, 0.08, 0.36, 0.24 for y) in
a sensitivity analysis to account for uncertainty in pest movement. Species-specific dispersal parameter values are
unavailable for each target pest. We then built pest invasion networks, where a node represented a host location,
and link weights indicated potential pest movement between host locations (gyy,; or ay,.). We calculated host
landscape connectivity based on six standard network metrics in epidemiology and invasion ecology (22, 38, 61,
80-82): betweenness centrality, closeness centrality, eigenvector centrality, node strength, PageRank centrality,
and sum of nearest neighbors’ node degrees. Here, global maps of invasion risk represent the multi-host landscape
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connectivity for a target invasive pest, averaged across two gravity models, eight typical dispersal parameter
values, and six standard network metrics with equal weighting (Code Vignette S1). Host landscape connectivity
indicates the average relative likelihood of an invasive pest potentially spreading from a target host location to all
its functional neighbors in a landscape if the invasive pest reaches the target location.

We assumed separately that pest survival is more likely in areas where the host species richness of a pest is
higher than where only one host species is reported (/4). We used georeferenced occurrence data for each pest
species as an independent dataset to validate the multi-host connectivity estimates. We used two metrics to assess
model performance based on presence-only data. First, precision is the ratio between the number of grid cells
where the target pest has been reported present and the multi-host connectivity is nonzero (true positives), and the
number of grid cells where the target has been reported present (true positives + false negatives). Second, we
assessed whether multi-host connectivity is higher in locations where the pest is reported present than elsewhere.
To assess this hypothesis, we conducted an asymptotic two-sample Kolmogorov-Smirnov test. The multi-host
connectivity analyses had good precision (from 0.68 to 0.87; Table S6). The KS test revealed that multi-host
connectivity tends to be higher in locations where the pest is present than elsewhere (p < 0.001, Table S6),
supporting a likely major role of multi-host connectivity in driving the spatial occurrence of each pest.

Computational requirements. Global host landscape connectivity analyses require high-performance computing
resources. For example, each analysis of host landscape connectivity based solely on betweenness centrality in the
Eastern Hemisphere required using 40 CPUs and 80 GB of memory for 110 hours in the University of Florida
HiPerGator.

Code availability. A template for processing R-scripts (source code) of each analysis in this study is publicly
available in GitHub repositories: https://github.com/AaronPlex/pestradenet for international trade networks,
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https://github.com/AaronPlex/pest-env-sdm for environment-based SDMs, and
https://github.com/AaronPlex/multi-host-nets for the host connectivity analysis.

Data availability. All unpublished datasets supporting results and reproducibility of this study are publicly
available as supplementary material. All published datasets used in this study are correspondingly cited.

2. Results

Pest introduction risk based on trade networks of agricultural commodities

Potato spindle tuber viroid (PSTVd, n = 166) — Ralstonia solanacearum phylotype 1IB1 (RSIIB1, n = 158)

Low Trade-mediated pest introduction risk High
| 1
0.20 0.40 0.60 0.80 1.0

Fig. 2. Cumulative potential of (re)introduction for four invasive plant pests. This risk analysis considers international pest-specific
commodity pathways, pest distribution at the country level, major crop host availability at the country level, and accessibility to ports. n
is the number of importing countries with a possible introduction risk through international trade of agricultural commodities. Countries
in grey have no reports of international trade of these commodities. Pest silhouettes are not drawn to scale.
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Fig. 3. Potential geographic spread routes of pathogens and pests through international trade networks in the Caribbean region and
United States. Countries closer to the center of the trade networks have higher risk of pathogen or pest introduction via trade of high-
risk crop commodities. Node size indicates the availability of crop species that are hosts of a pest. Pathogen or pest invasion potential and
trade movement potential are relative rankings useful to compare invasion risks within (not between) trade networks. Abbreviations:
ANTI — Antigua and Barbuda, DOM — Dominican Republic, KN — Saint Kitts and Nevis, TT — Trinidad and Tobago, VC — Saint Vincent and the

Grenadines. Pest silhouettes are not drawn to scale.
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Given resource scarcity, long-term prevention of pest invasions into new host areas is increasingly
challenging for National Plant Protection Organizations (NPPOs). While local sentinel surveillance and invasion
management should continue actively and recursively in pest source regions (Fig. S-4), proactive surveillance
could target potential pest movement among large-scale habitat regions unintendedly mediated by international
trade (Fig. 2). There is a global concern regarding the invasive pests studied here, yet each species lacks a global
risk assessment, except for P. absoluta, which has a global map for climate-based risk. GIRAF identified
candidate hotspot areas with relatively high pest introduction potential based on historical trends in global trade of
pest-associated crop commodities (Fig. 2). If this historical pattern in international trade continues, crop
commodity destinations with a high relative potential of trade-mediated pest introductions globally include
solanaceous crop ecosystems in the USA, Niger, Saudi Arabia and Egypt for PSTVd; Pakistan, Tanzania, Saudi
Arabia, and Senegal for RSIIB-1; Ukraine, United States, Canada, and Kazakhstan for TOBRFV; USA, Canada,
Bahrain, Kuwait, and UAE for P. absoluta (Fig. 2). GIRAF emphasized these countries because they are major
large-scale crop host producers. However, preventing pest introduction via safe international trade poses a broader
challenge. Specifically, international trade networks of crop commodities involve many host-growing countries
potentially acting as commodity destinations (Fig. 2), each pest has a global yet scattered distribution, and many
countries exporting agricultural commodities may serve as possible pest source pools (Fig. 3). Historically,
international trade of specific agricultural commodities has played a major role in the rapid spread of these target
pests across the world (Fig. S1-4).

GIRAF also allows assessing pest introduction potential focused on specific geographic regions. For example,
if the goal is proactive surveillance prioritization in the USA and the Caribbean region, GIRAF identified key
regional hubs in international trade networks where the (re)introduction of each target pest is likely. These
regional hubs consist of host-growing countries that import pest-associated crop commodities from many regions
where a target pest is present. The USA, the Dominican Republic, and Cuba serve as regional trade hubs in this
region, presenting a potential introduction risk for each target pest (Fig. 3). Likewise, Saint Vincent and the
Grenadines, Antigua and Barbuda may act as possible hubs exposed to TOBRFV or P. absoluta (re)introduction.
Lastly, GIRAF distinguished spatially explicit potential movement pathways for each target pest (Fig. 3) among
these large-scale habitat regions. For example, Cuba imported potato seed from nine countries: these international
trade activities represent a high movement potential for RSIIB-1 but a low movement potential for PSTVd (Fig.
3). Similarly, the USA imported tomato commodities from 27 countries: these trade connections provide a
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possible movement pathway for P. absoluta from Peru, Colombia and Brazil, but they have a low movement
potential for TOBRFV.

Pest invasion risk based on environmental suitability

Potato spindle tuber viroid (PSTVd, n = 75) == Ralstonia solanacearum phylotype IIB1 (RSIIB1, n = 151)

— =

— -

Estimated environmental suitability High
l l

0.20 0.40 0.60 0.80 1.0

Fig. 4. Global risk hotspots for four invasive pests based on an ensemble of spatially implicit and environment-based machine-learning
models. Sample size (n) is the number of historical georeferenced pest outbreak observations (black square outlines) used to train
individual species distribution models. Black pixels are locations where the ensemble model predicted to be environmentally unsuitable.
Pest silhouettes are not drawn to scale.

After a species’ introduction, national early warning systems need to determine the degree and extent to
which the local environment is suitable for establishment and spread of any invasives. In GIRAF, a suitable
environment for pest invasions depends on climatic, edaphic, and hydrological conditions. Here, GIRAF inferred
environmental suitability from a machine learning ensemble model trained on the most comprehensive
compilation of geographically distinct outbreak observations of each target pest in the last century. This
environment-based modelling approach successfully predicted the currently reported georeferenced range of each
target pest (Fig. 4, average model accuracy ranging between 61% and 96% depending on the model used). The
pandemic distribution of these pests calls for a globally coordinated invasion mitigation system that consistently
responds to possible recurring outbreaks in already affected areas and is adapted by biosecurity agencies and plant
industries to regional circumstances. Proactive response should also become routine beyond current invasion
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hotspots and GIRAF identified these key surveillance targets. The environmentally informed model in GIRAF
provides key spatial predictions beyond reported geographical ranges of each target pest, indicating that some
locations might be environmentally suitable for pest development under current conditions. For each target pest,
these potential environmentally suitable locations with >50% likelihood of invasion include a large area
throughout China, and an eastern region in Australia (Fig. 4). Other possibly suitable areas are specific to each
target pest. For example, Southeastern USA and the US Pacific Coast are likely climatically suitable areas for
RSIIB-1. If these pests are allowed to reach currently uninvaded areas through natural or human-mediated means,
each target pest would have a potential broader geographic range for invasion globally. Preventing further range-
expansion of these global pest risks requires (pro)active surveillance programs coordinated by international plant
health communities.

Pest invasion risk based on multi-host landscape connectivity

Potato spindle tuber viroid (PSTVd, N = 41, A = 43.83) p— Ralstonia solanacearum phylotype 1IB1 (RSIIB-1, N = 47, A = 60.88)

Multi-host landscape con;nectivit'y‘ High
I [ i

0.40 0.60 0.80 1.0

Fig. 5. Global risk hotspots for four invasive pests based on multi-host landscape connectivity. Color gradient represents the magnitude
in mean host landscape connectivity of each location, calculated across a highly likely range of dispersal parameters. Global host
community properties include the number of naturally infected host species used for the host connectivity assessment, including
cultivated, weedy and wild species (N) and the land surface area with hosts available measured in million square kilometers (A). Grid cells
in black are locations where host is not reported. Pest silhouettes are not drawn to scale.



473
474
475
476
477
478
479
480
481
482
483

484
485
486
487
488
489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506

GIRAF offers an innovative approach to mapping the global distribution of multiple hosts of a target pest
using publicly accessible databases. Previous approaches provided global single-species (usually crop)
assessments and occasionally national multi-species assessments. GIRAF provides a global or local multi-species
connectivity assessment of crops and non-cultivated hosts associated with a target pest. Here, host connectivity
refers to the relative likelihood of spread of a pest between host locations if the pest reaches a target location in
the host landscape, all else being equal. GIRAF quantifies this potential functional host connectivity based on host
availability (structural connectivity) and a highly likely range of pest dispersal parameters (see Methods).
Mapping multi-species connectivity helped us understand possible local spread of each target pest in a realistic
heterogeneous host landscape. This comprehensive approach identified candidate surveillance priorities, from
possible structural geographic barriers where a host is unreported to spatially contiguous host areas and spatially
fragmented host habitats.

Host availability strongly correlates with mean host connectivity (Spearsman’s ¢ = 0.62 for PSTVd, 0.81
for RSIIB-1, 0.65 for TOBRFV and 0.80 for P. absoluta, p < 2.2e-16), so highly dense host communities
commonly have high functional connectivity. This pattern is also supported by small differences in ranks for
locations with high host connectivity and high host density (Fig. S10). For example, Europe, Southern Asia, and
China have a homogeneously dense host landscape that is likely to facilitate the local spread of each pest (Fig. 5).
A homogeneously dense host landscape for P. absoluta is available throughout Central and North America (Fig.
5). However, within-continent host communities in the Americas and Africa are spatially fragmented for PSTVd,
RSIIB-1 and ToBRFV. Despite this structurally spatial habitat fragmentation, chances of pest movement due to
functional host connectivity in the Americas and Africa are proportionally greater than if we consider only host
availability. For example, California, Burundi, Rwanda and a western region in Kenya have particularly high
functional host connectivity for PSTVd, RSIIB-1 and P. absoluta. These highly connected host communities are
potentially effective spread paths if the pest reaches these locations.

In the Americas, there is a conterminous host belt throughout the Andes for the potential natural
dissemination of each target pest. Panama is possibly a non-host disconnection for the natural spread of PSTVd,
ToBRFV, and P. absoluta. Nonetheless, a contiguous host landscape in Central America is expected to act as a
structural and functional bridge zone for the potential gradual spread of RSIIB-1 between North America and
South America. Reported host availability is scattered throughout Africa, especially for PSTVd and ToBRFV.
However, a landscape along the northern and eastern border of Nigeria has a high host connectivity for each target
pest (Fig. 5). This host landscape fragmentation in Africa requires a future assessment of unreported host
distribution influencing potential spread of these pests. Considering only croplands substantially underestimated
invasion risk compared to a multi-species host assessment for each target pest. Host species richness was weakly
negatively or positively correlated with functional host connectivity (Spearsman’s g = —0.04, p = 1.486¢-13 for
PSTVd; rg =0.31, p <2.2e-16 for RSIIB-1; rg = 0.19, p <2.2e-16 for ToBRFV; and ¢ = 0.49, p < 2.2e-16 for
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P. absoluta). We thus expect that cross-species transmission of these pests is more likely in highly connected host
locations, especially if crop ranges spatially overlap with non-cultivated host species.

Pest invasion risk based on a biogeographical multi-dimensional assessment

Each component of GIRAF provides an individualistic invasion risk perspective, and decision-makers can
use each risk factor map individually as a first approximation for a pest’s invasion risk when geographic
information of other ecological factors is lacking. Each component represents a static snapshot of a pest’s
potential geospatial distribution and a dimension of its spatially referenced ecological niche. Trade and
transportation networks are proxies for (re)introduction pressure (long-distance dispersal niche), environmental
suitability may capture environmental requirements of a target invasive (environmental niche), and host landscape
connectivity highlights spatial patterns of a pest’s spread through a landscape of susceptible hosts (trophic niche).
GIRAF reconciles these different geospatial perspectives on a multidimensional analysis of invasion risk,
representing a second ecological approximation of the relative likelihood of a pest’s spread success or the
potential invasion risk posed by a pest (Fig. 6). We applied the biotic, abiotic, and migration (BAM) framework
(7, 14) to generate combined estimates of potential geographic distribution and the likely spread of an invasive
species. Specifically, we considered that geographic locations where high levels of host landscape connectivity,
predicted environmental suitability, and international trade along with accessibility to ports intersect are highly
likely suitable geographic areas for a species’ invasion (Fig. 6). This multicriteria biogeographical approach also
aligns with the three widely recognized components necessary for plant disease development (i.e., environmental
conduciveness, host susceptibility, and pathogen aggressiveness) in a geographical space [landscape
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Fig. 6. Worldwide pest invasion risk based on a multi-dimensional assessment. In these multivariate choropleth maps, the intensity of
each primary color represents the invasion risk level of a target pest based on environmental suitability (or environmental niche, red
spectrum with low values in the left columns to high values in the right columns of the legend), host landscape connectivity (or trophic
niche, green spectrum with low values in the bottom rows and high values at the top of the legend) and international trade of crop
commodities (or dispersal niche, blue spectrum with low values across the base layer and increasing with layers at the front of the
legend). Grid cells in black indicate areas with no invasion risk (e.g., Antarctica) and pale-yellow grid cells indicate highest-risk areas for a
pest invasion where high levels of the three risk factors overlap. For example, grid cells in orange have a high environmental suitability
and relatively low levels of host connectivity and trade-mediated introduction risk.

By mapping at-risk locations for potential pest spread based on three major ecological risk factors,
GIRAF provides a starting point for global invasion preparedness and spatially explicit surveillance prioritization.
The highest levels of these three major risk factors rarely coincided. Globally, Central Europe, India, and northern
China, where the pests are present, have relatively high levels of each risk factor (Fig. 6). GIRAF allows us to
identify areas where high levels of pairs of risk factors coincided. For example, large areas in the USA have high
(re)introduction risk and high environmental suitability but reported host distribution may be a limiting factor.
Lastly, GIRAF provides a multi-scale lens to account for likely scale-dependent processes in invasion risk. At a
finer spatial resolution, GIRAF revealed better-informed patterns of invasion risk for Florida and surrounding
areas (Fig. 6). For example, northern Florida had moderate levels of each risk factor for each target pest.
Identifying these fine-scale patterns might be difficult in global analyses.

3. Discussion

Protecting plant health from invasive pests is key to holistically safeguarding agroecosystems’ provision
and natural ecosystems’ functioning, especially in co-response to 21st-century global challenges like resource
depletion, plant pandemics, and climate change. GIRAF 1.0 provides critical points for constructing geographic
surveillance and mitigation strategies of species-specific invasive pests. GIRAF 1.0 provides a key advance for
improving pest invasion risk assessments, by integrating four ecologically meaningful drivers of invasive species
spread globally. Specifically, we focused on which, how, and where risk factors may be important for pest
invasions (geographic risk quantification).

Here, GIRAF quantified potential risk hotspots for four pests of global concern, using species-specific
biogeographic models of trade-mediated (re)introduction potential, environmental suitability, and host landscape
connectivity for a contemporary timespan. Our results provide the first quantitative assessment of invasion risk
for plant pests across these geographic factors globally. We provide new evidence that host communities for each
target pest occupy ~33.1-60.8x10° km? or ~22-37% of Earth's land surface. Europe and Southeast Asia have a
highly suitable environment and high multi-host connectivity for each pest. The global trade networks of high-risk
commodities associated with each target pest include over 100 countries. The USA ranks among the top five
countries with trade-mediated (re)introduction potential, and some regions of this country are environmentally
suitable for pest invasion.

These findings may have high uncertainty for invasion risk of these pests in some regions, where host
availability is not reported, informal trade of planting materials occurs, implemented phytosanitary measures are
not openly accessible, and along international terrestrial borders. Despite these unquantified uncertainties, our
findings call for planning (pro)active responses to and effective plant protection strategies against future pest
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outbreaks (Fig. 1). These responses include: (1) proactive surveillance should target regions where each pest is
unreported, but which have high invasion risk (Fig.2-4); (2) making international trade networks safe needs
enhanced pest-specific biosecurity in over 100 countries (Fig. 2 and 3); and (3) breaking high host connectivity
for these pests requires regional management efforts, particularly where solanaceous crops geographically overlap
with non-cultivated host species (Fig. 5-6).

Together our findings of widespread invasion risk of each target pest underscore an urgent need for
enhanced invasion and pandemic prevention, preparedness, and response globally. To prevent further
introduction, establishment, and local spread of these pests of global concern, long-term transnational strategies
for (pro)active surveillance and risk mitigation are the primary candidate components for reinforcing the currently
nationally coordinated plant health systems (10, 25). Effective management of these invasive pests also needs
intersectoral support from private sectors (food security crops and ornamental industries), natural ecosystem
conservation, and NPPOs.

Widespread implementation of GIRAF 1.0 depends on readily available, interoperable pest information
systems and timely financial support (/0), motivating countries to build and share local databases (e.g., spatial
estimates of informal domestic trade, crop yield losses, or measured area invaded by a pest). GIRAF 1.0 is yet
simplistic, compared with the complex reality of biological invasions (70), lacking pest species interactions with
natural enemies, genetic population evidence, inherent stochasticity, and fine-scale spatiotemporal dynamics.
Invasion risk frameworks like GIRAF generally lack explicit quantitative impact assessments on multifaceted
outcomes globally, such as crop yield losses (74), agriculture profit reduction, plant biodiversity losses, or
environmental impacts. These research frontiers in pest information systems hinder any invasion risk framework
from providing timely interventions for real-time geographic monitoring prioritization, in the context of allocating
scarce operating resources for plant health protection. GIRAF 2.0 should tackle these grand challenges in invasion
science as biogeographic pest information systems keep improving periodically. We hope GIRAF 1.0 serves the
scientific communities as a starting reference model to design future global risk assessments for thousands of
potential invasive species devastating Earth’s plant ecosystems.
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