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Abstract 28 

Invasive pests pose a growing threat to global ecosystems. Current invasion risk models rarely quantify 29 

multiple species-specific drivers for the worldwide spread of transboundary pests. We propose a global 30 

invasion risk assessment framework (GIRAF) which explicitly quantifies, integrates, and maps species-31 

specific geographic risk factors – multi-host landscapes, abiotic factors, trade networks of agricultural 32 

commodities, port accessibility, and international biosecurity policies. We applied GIRAF to assess potential 33 

scenarios for the introduction, establishment, and spread of invasive pests –Phthorimaea absoluta, Ralstonia 34 

solanacearum, tomato brown rugose fruit virus, and potato spindle tuber viroid. We found that host 35 

communities for each pest occupy ~22-37% of Earth's land surface, with Europe and Southeast Asia 36 

providing a highly suitable environment. The USA ranked among the top five countries with a high trade-37 

mediated (re)introduction potential for each pest. GIRAF provides key starting points for proactive 38 

surveillance prioritization and geographic mitigation against the potential spread of invasive pests, supporting 39 

transnational biosecurity agencies and global food industries. 40 
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Teaser 43 

Integrated spatial risk assessments can improve proactive surveillance for invasive species. 44 

1. Introduction 45 

Invasive species are an increasing challenge to ecosystems worldwide. Effective invasive species 46 

management is inherently a key component of sustainable plant ecosystems aiming to contribute to the UN 47 

Sustainable Development Goals (SDGs), particularly those oriented towards agricultural productivity, food 48 

security, human livelihoods, and ecosystem health (1, 2). Solely attaining agricultural sustainability on a local and 49 

global scale requires a substantial decline in the estimated 10-40% crop yield loss caused by new and re-emerging 50 

diseases and pests (3). Unchecked outbreaks of plant diseases and pests can inflict substantial impacts on global 51 

food baskets, international markets, plant health, and natural ecosystem functioning (4). Increased globalization 52 

(commodity trade, human transport, and cropland expansion) and climate change drive the unprecedented spread 53 

of invasive pathogens and pests at large scales (5-8). A main goal of proactive responses to this multifaceted 54 

human-driven invasion crisis is to prevent future socioeconomic, political, and ecological impacts if pathogens or 55 

pests expand farther and persist longer in a region (2, 5, 9, 10). An increasingly important component in invasive 56 

species management is integrated risk assessment before and shortly after the initial or repeated introduction of 57 

pathogens and pests in new areas. In the long term, this integrated assessment would anticipate invasive spread, 58 

prepare spatially explicit surveillance strategies, and formulate biosecurity geo-policies as aspired to in the One 59 

Biosecurity perspective (2, 10, 11). 60 

Geographic pest risk analysis provides a general framework to identify most likely locations for pest 61 

introduction, establishment, and spread (12-16), regularly requiring quantification of risk factors such as host 62 

availability, climate suitability, commodity trade, and human transportation. An integrated assessment of key 63 

geographic risk factors helps appropriately prioritize often-limited resources for active surveillance of invasive 64 

species in agroecosystems, is a fundamental layer of invasion preparedness, and strengthens early warning 65 

systems for invasive pest outbreaks. Integrated risk assessments are increasingly needed owing to the 66 

unprecedented rise in current and future mass biological invasions and crop epidemics worldwide in the 21st 67 

century (8, 17, 18). Nevertheless, assessing these risk factors collectively and globally is challenging; 68 

consequently, anticipating the actual spread of an invasive species is highly uncertain and sometimes seems 69 

driven by random chance. High-resolution maps of plant host distribution, detailed information on international 70 

and domestic trade of high-risk commodities, and species-specific environmental requirements are important 71 

information gaps that remain open for many invasives, especially plant pathogens and pests (1, 19-21). Given this 72 

inherent uncertainty, a proactive data-driven approach for explicit quantification of geographic risks of invasive 73 

species is to leverage existing limited geospatial data through general principles from invasion science, disease 74 

epidemiology, pest ecology, and species distribution modeling (22), while assembling better data in publicly 75 

accessible platforms in the digital era (10, 23). Currently, expert opinion is the traditional (sometimes the only 76 

feasible) option when evaluating the national risk of an invasive pest in the immediate term (16, 24, 25). 77 

Hundreds of quick risk assessments are available for specific countries (12, 16, 24), but they represent a tiny 78 

fraction of an increasing number of pests affecting plants globally (18). Research over the last three decades has 79 



   

 

   

 

led to an increasingly better understanding of individual geographic drivers of pest invasions (10, 12-15, 22, 26, 80 

27). Nevertheless, available frameworks are rarely applied to integrate multiple species-specific drivers of 81 

invasive pest spread across geographic scales. Here, our goal is to provide a new, integrated risk assessment 82 

framework (GIRAF 1.0) evaluating possible scenarios for spatial spread of invasive pests (Fig. 1). GIRAF 83 

harnesses advances in knowledge about invasions into a quantitative use-inspired approach and can be applied as 84 

a data-driven foundation complementary to expert assessment. GIRAF explicitly integrates common geographic 85 

risk factors underlying the most likely paths for spatial spread of invasive pest species, mapping their potential 86 

geographic distribution, and identifying candidate priority locations as a critical component of global surveillance 87 

strategies (7, 11). 88 
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Fig. 1. The proposed global multicriteria framework of invasion risk assesses four of the five fundamental drivers of invasive 90 
species spread (environmental suitability, host availability, international trade including seed exchange, local transportation such as 91 
access to cities, but no wind patterns yet). GIRAF comprises four major components: integration of data sources (public datasets and 92 
expert-assembled datasets), decision-making on variable inclusion, assembly and selection of models, and spatial predictions of invasion 93 
risk (boxes in yellow, orange and red). Of course, GIRAF is subject to the GIGO axiom (garbage in, garbage out), where the quality of 94 
outputs is only as good as the quality of the input data. No single database used here is bias-free (see Methods for full name of datasets). 95 
In GIRAF, expert evaluation is needed in each component, from data input to model selection, parameter choices, and risk factor 96 
importance. Pest and disease prioritization is an expert-driven process external to this framework (15)[Note S1]. This framework’s 97 
primary goal is to provide species-specific invasion risk maps for (pro)active surveillance and risk mitigation over a contemporary time 98 
horizon. The multiscale lens indicates that GIRAF is applied across geographic scales, from global to local. 99 



   

 

   

 

As a pilot application of GIRAF, our first objective is to assess the global risk posed by four economically 100 

important invasive pests: the South American tomato leafminer (Phthorimaea absoluta), Ralstonia solanacearum 101 

phylotype IIB sequevar 1 (RSIIB-1 hereafter; former assignation “Ralstonia solanacearum race 3 biovar 2”), 102 

tomato brown rugose fruit virus (Tobamovirus fructirugosum; ToBRFV hereafter), and potato spindle tuber viroid 103 

(Pospiviroid fusituberis; PSTVd hereafter). Specifically, we assessed four geographic risk factors expected to 104 

promote the potential spread of these and many other invasive species and their establishment risk in new suitable 105 

habitat regions: (i) international trade of high-risk agricultural commodities, (ii) cropland accessibility to ports and 106 

cities as potential introduction points, (iii) host landscape connectivity, and (iv) spatial projections based on the 107 

species’ environmental suitability (Fig. 1). Mapping international trade of agricultural commodities – along with 108 

cropland accessibility to ports and cities – points out which locations may serve as critical entry points for initial 109 

or repeated introductions if a targeted pest or infected vectors inadvertently trespass international borders and 110 

successfully overcome biosecurity boundaries (28-31). Once a pest is introduced into a new area, host landscape 111 

connectivity indicates local spread potential of pests based on host availability and dispersal opportunities 112 

between host areas (32-34). Likewise, measures based on prevailing climate or edaphic variables indicate which 113 

locations in a host landscape are more environmentally suitable for establishment and local spread of an invasive 114 

pest (35, 36). Together with wind patterns and human transportation networks (not implemented directly in 115 

GIRAF1.0) (25, 27, 36), these are the main geographic habitat factors facilitating pest invasion and epidemic risk 116 

in global plant ecosystems (12, 37, 38).  117 

These four transboundary pests have wreaked havoc on solanaceous crops and ornamental industries, with 118 

devastating impacts on plant health globally, and possibly affecting natural plant ecosystems. The global value of 119 

solanaceous crops (peppers, potatoes, and tomatoes) jointly accounted for US$296 billion in production and 120 

US$38 billion in international trade in 2022 (39), making them key for food security, income generation, and 121 

livelihoods. Over the past century, transcontinental and transoceanic range expansion of these targeted pests on 122 

multi-species host landscapes exemplifies both large-scale and local invasions of global ecosystems dominated by 123 

large, cultivated plant populations (Fig. S1-4). Reconstructing biogeographic dynamics of these pests belonging to 124 

four taxonomically distant groups enabled us to identify which ecological scenarios are frequently plausible in 125 

pest invasions. Applying GIRAF on these globally concerned pests allowed us to keep a balance between general 126 

invasion dynamics by considering common drivers of species spread (5, 31) and idiosyncratic ecological niche 127 

differences among invasive species, such as host diversity, and dispersal pathways (10)[Note S1-2]. Although this 128 

article focuses on these invasives as real-world case studies, GIRAF has practical and cross-disciplinary relevance 129 

beyond these studied systems, provided minimal data input is available to reproduce the geographic risk analysis 130 

for the invasion of a target plant, animal, or microbial taxa. GIRAF also has multiscale lens (Fig. 1) supporting 131 

invasion risk assessments at smaller geographic extents and finer spatial resolutions. Our second objective is to 132 

apply GIRAF to understand local invasion risk of the same target pests in Florida and surrounding areas, 133 

including Alabama, Georgia, and South Carolina. 134 

Materials and methods 135 

GIRAF relies on four fundamental components, which are not mutually exclusive: (i) defining ecologically or 136 

epidemiologically important risk factors, (ii) collecting or compiling fine- or broad-scale data related to these risk 137 

factors, like dispersal pathways, species geographic occurrence, and host range, (iii) selecting and (re)training the 138 

model(s) based on digitally accessible information, and (iv) generating evidence-based maps of potential priorities 139 



   

 

   

 

for surveillance and mitigation. Risk analysts, policymakers, and biosecurity practitioners can provide periodic 140 

feedback on each component’s input and iteratively fine-tune the resulting spatial projections of pest invasion 141 

risk, particularly if relevant information like informal trade of agricultural commodities is privately or unofficially 142 

documented. 143 

Data assembly for ecologically important species traits. We built (i) a geographic distribution spreadsheet 144 

including the reported countrywide extent of each pest species, the earliest year of the pest collection or detection 145 

in the country, the first year of the country report publication, and georeferenced presence records wherever 146 

available; and (ii) a host-parasite association list including plant species naturally or experimentally infected by 147 

the pathogen or infested by the pest, and the reported countries of these associations (Data S1). These 148 

spreadsheets represent a comprehensive data compilation based on publicly available reports until 2023 including 149 

journal articles and official reports by National Plant Protection Organizations (NPPOs). Despite this extensive 150 

data compilation effort, global systematic sampling or highly standardized reporting exists is rare for these pest 151 

species. While the spread of pests at large spatiotemporal scales cannot always be systematically represented or 152 

studied well by small-scale field and laboratory experiments (40), ‘national- or continental-scale controlled trials’ 153 

are certainly not pragmatic or realistic at this time (41). Alternatively, notwithstanding being systematically 154 

incomplete, geographically biased, and often sampled based on convenience, observational distribution data 155 

serves as a primary source of empirical information for mapping potential spread of invasive pests across broad-156 

scale crop-growing regions. 157 

For each natural host species listed in the host-parasite association spreadsheet, but unavailable in the 158 

CROPGRIDS dataset (42), we created maps of relative host density. We manually downloaded species-specific 159 

georeferenced occurrence records from the Global Biodiversity Information Facility (GBIF) database on July 5th, 160 

2024 (43-45). In a global map with grid cells of about 2.3 km at the equator (or 1.25-minute spatial resolution), 161 

we assigned each grid cell the square root of the number of presence records of host species, or 0 if there were no 162 

georeferenced records. These global maps represent the geographic distribution of individual plant species at a 163 

relatively high spatial resolution and are expected to be highly biased in places where sampling effort is smaller. 164 

We thus aggregated each map at a ~55 km resolution (i.e., 0.5° per grid cell), calculating the mean grid cell values 165 

at coarse resolution, and expecting to partially reduce sampling bias (44). These maps represent a first 166 

approximation of relative host density; future approaches could train species distribution models to provide better 167 

maps of each host. For cultivated natural host species of each pest, we obtained global maps of crop-specific 168 

harvested areas available in the CROPGRIDS dataset, which are more accurate than maps built from GBIF 169 

records of crop species. 170 

Spatial coverage. Below, each analysis targeted two geographic extents. Global analyses are presented at 171 

0.5° spatial resolution. Each trained model also produced risk maps for each pest focusing on Florida, Alabama, 172 

Georgia, and South Carolina resampled at 3’ spatial resolution. 173 

Mapping invasion risk based on species bioclimatic modelling. We obtained global gridded maps of the 19 174 

bioclimatic variables from CHELSA Bioclim, representing climates for 1989-2013 (46), and of 12 soil properties 175 

from SoilGrids 2.0, representing edaphic conditions at 15-30 cm standard depth (47). We also gathered 13 176 

available maps of physical accessibility of the mainland and islands, representing travel time to ports and cities 177 

(48, 49). Four maps represent accessibility to airports and maritime ports, each aggregated at one of four port 178 

sizes. We assigned individual weights to each port size map because each may have a different degree of 179 



   

 

   

 

importance to the entry of commodities and associated pests (Table S1). We then built an overall accessibility 180 

index to ports (𝐴𝑝) as a weighted average of accessibility to individual port sizes. The remaining nine maps 181 

represent accessibility to urban and rural locations, each aggregated at one of nine settlement classes. We assigned 182 

a different weight to each settlement class to calculate a weighted average of overall access to cities (𝐴𝑐) across 183 

the nine settlement classes (Table S2). 184 

We trained four probabilistic machine learning algorithms – MaxEnt, random forest, XGboost, and logistic 185 

regression – which are commonly used for presence-only data (35, 50). Each algorithm represented a correlative 186 

species distribution model (SDM), in which the response variable was 1 for reported georeferenced presence 187 

records and 0 for pseudo-absences (i.e., background points randomly selected from a world land map). Each SDM 188 

was initially trained and evaluated on the following selected predictor variables: annual mean temperature, mean 189 

diurnal range in temperature, isothermality, annual precipitation, precipitation seasonality, chemical soil 190 

properties (pH, and soil organic carbon content), physical soil properties (clay, sand and silt content), port 191 

accessibility (𝐴𝑝) and city accessibility (𝐴𝑐). These predictors are a subset of all variables available in each 192 

dataset considered, allowing us to avoid multi-collinearity, while still maintaining a substantial variation of 193 

ecologically relevant covariates. These initially trained SDMs indicated 𝐴𝑝 as the most important variable 194 

explaining the reported distribution of each invasive species (54%, 27%, 72%, 53% contribution in presence 195 

predictions for PSTVd, RSIIB-1, ToBRFV, and P. absoluta based on MaxEnt, respectively; Data S1). However, 196 

we excluded the contribution of port accessibility in the final predictions by each SDM. Instead, we adopted a 197 

mechanistic approach for analyzing both 𝐴𝑝 and 𝐴𝑐 along with international trade, and host distribution to 198 

consider explicitly the individual ecologies of each invasive pest (see below). 199 

This multi-model approach was used to generate a global map of ensemble predictions, which equally 200 

weighted the spatial projections of these four SDMs, as a quantitative consensus approximation of abiotic 201 

environmental suitability for each invasive species. These species-presence predictions based on occurrence-202 

environment associations are an initial and provisional approximation for a species’ environmental suitability 203 

since true mechanistic ecological interactions between abiotic environmental conditions and invasive pest 204 

occurrence have generally not been characterized quantitatively (ecological niche modelling). Importantly, some 205 

locations are likely to have a higher climate suitability than predicted by the ensemble approximation, which will 206 

be discovered as each pest continues invading new environments and geographical spaces. We lack a quantitative 207 

understanding of how edaphic or climate conditions directly restrict or facilitate geographic occurrence and each 208 

stage in the life cycle of these invasive species, which is a prevalent situation for non-vector-transmitted plant 209 

viruses causing infectious diseases (a knowledge gap in plant virus ecology). However, once this ecological 210 

information becomes available, process-based, component-based, or mechanistic models for these pest species 211 

can be preferentially used to explicitly incorporate direct climate effects on pathogen distribution or a species’ 212 

physiological response to environmental conditions.  213 

We adjusted our probabilistic bioclimatic ensemble with known environmental parameters for each species 214 

(model calibration). We used Shelford’s law of tolerance to adjust the maps of ensemble predictions of 215 

environmental suitability for Phthorimaea absoluta and RSIIB-1. The law of tolerance states that an organism’s 216 

success is determined by a set of certain minimum, optimum, and maximum environmental conditions (51). Using 217 

this ecological principle, we applied a generalized beta distribution model to project the potential invasion risk as 218 



   

 

   

 

a response function dependent on temperature (52, 53). In this thermal niche model, invasion risk (𝑟(𝑇)) depends 219 

on three cardinal temperatures for a species’ population development (Data S10): the minimum temperature 220 

(𝑇𝑚𝑖𝑛), optimum temperature (𝑇𝑜𝑝𝑡), and maximum temperature (𝑇𝑚𝑎𝑥). We used the monthly mean temperature 221 

of each location (𝑇𝑥,𝑦, where x and y refer to geographic coordinates) in the world to estimate pest invasion risk 222 

locally:   223 

𝑟(𝑇) = max {0, (
𝑇𝑚𝑎𝑥−𝑇𝑥,𝑦

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
) (

𝑇𝑥,𝑦−𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
)

𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡

}.  224 

Invasion risk is highest at locations with 𝑇𝑜𝑝𝑡, decreases at temperatures higher or lower than 𝑇𝑜𝑝𝑡, and 225 

reaches zero beyond critical thermal limits tolerated by a species (below 𝑇𝑚𝑖𝑛 or above 𝑇𝑚𝑎𝑥). This temperature-226 

driven physiological response is common in arthropods, plants, nematodes, fungi, and bacteria, and applies to P. 227 

absoluta as well as the cold-tolerant RSIIB-1 strains (54-56). Here, cumulative pest invasion risk in a location 228 

over a year is proportional to the sum of 𝑟(𝑇) of each month. We regarded climatically unfavorable locations as 229 

those with 𝑇𝑖 < 𝑇𝑚𝑖𝑛 or 𝑇𝑖 > 𝑇𝑚𝑎𝑥, defining geographically possible thermal range frontiers of a species. 230 

Surface water such as rivers may serve as an aquatic habitat for the dissemination, survival, inoculum source, 231 

and evolution of plant pathogens in almost every major taxonomic group (57-59). We incorporated river networks 232 

in GIRAF as a possible plant health risk and a dispersal pathway for RSIIB1. Using the HydroATLAS database 233 

(60), we calculated the mean river water discharge as a relative proxy for the likelihood that RSIIB-1 would 234 

disperse to any climatically suitable location globally. No information was available about the direct effect of 235 

environmental variables on disease risk caused by ToBRFV and PSTVd. 236 

We cross-validated each SDM individually using ten folds and 1000 iterations. The model’s average accuracy 237 

ranged between 0.9 and 0.96, 0.85 and 0.92, 0.83 and 0.98, and 0.61 and 0.73 for MaxEnt, random forest, 238 

XGBoost, and logistic regression. Each algorithm effectively identified an environmental signal for each pest 239 

species that is different from random variation (i.e., accuracy > 50%). Among SDMs, MaxEnt had the highest 240 

accuracy for predicting the occurrence of each pest species. Georeferenced occurrences capture only a fraction of 241 

the reported geographic distribution of each invasive species. We used the country-level distribution without 242 

georeferenced occurrences of an invasive pest as a geographically and statistically separate dataset (test data). We 243 

calculated the number of pixels with > 50% presence likelihood in each country of the test dataset averaged across 244 

SDMs as a performance metric for the ensemble predictions. 245 

Mapping (re)introduction risk based on international trade of crop commodities  246 

As a candidate precursor to developing safe trade strategies, we characterized the structure of trade networks 247 

to identify likely geographic paths of pest spread and the relative risks of locations to each pest species’ potential 248 

initial or repeated introduction(s) (10, 12, 18). Hereafter, we define invasion risk as the relative likelihood that a 249 

pest or pathogen (i.e., hazard) potentially reaches or occurs in a host location (13, 14, 32). In all our analyses, we 250 

used relative indices to estimate the likelihood of spread of an invasive species as approximations for invasion 251 

risk. In the global trade networks, specifically, we quantify the relative likelihood of potential spread of an 252 

invasive species through the international trade of agricultural commodities. 253 



   

 

   

 

We gathered information on the trade volume of crop-specific commodities between each pair of countries, 254 

based on bilateral import reports in the World Trade Organization (WTO, https://stats.wto.org/) dataset for 2005-255 

2019 and Volza (https://www.volza.com/) dataset for 2023. Our proxy for host availability within a country was 256 

the harvested area of crop species reported to be natural major hosts of each pest (Data S1), for crop species 257 

available in the FAOSTAT (https://www.fao.org/faostat/en/#data) dataset. To account for the potential effect of 258 

pest-associated trade policy landscapes, we also obtained information on international biosecurity measures 259 

targeting specific pest species, whenever available. We compiled information on the geographic extent of each 260 

pest within a country (Data S1), based on available reports in CABI Compendium, EPPO Global Database, and 261 

extensive literature scanning. In these international trade networks, nodes represent countries and link weights 262 

indicate the relative potential of pest spread between countries. 263 

We propose the trade index for potential accidental pest movement from an exporting country 𝑖 to an 264 

importing country 𝑗 (or 𝜏𝑖→𝑗) as a quantitative proxy characterizing pest invasion risk in trade networks. For any 265 

pair of trading countries, 𝜏𝑖→𝑗 combines explicitly and quantitatively the geographic extent of a pest species within 266 

trading countries, the host availability in trading countries, the trade volume of crop-specific commodities 267 

between countries and, whenever available, pest-specific biosecurity measures implemented by trading countries. 268 

Note S1 provides details of the methodological approach, mathematical formulations, theoretical assumptions, 269 

and available datasets used to quantify invasion risk (or 𝜏𝑖→𝑗) through international trade networks. We assumed 270 

that the joint relative chances that none of the exporting countries are likely to introduce the pest species into a 271 

target importing country 𝑗 is ∏ (1 − 𝑃(𝜏𝑖𝑘→𝑗))𝑧
𝑘=1 , where 𝑧 is the number of countries exporting a crop-specific 272 

commodity to country 𝑗. Finally, we assumed that the joint risk (𝐼𝑗) that the target pest is introduced into a country 273 

from any exporting countries is directly proportional to 1 − ∏ (1 − 𝑃(𝜏𝑖𝑘→𝑗))𝑧
𝑖=1 . Alternatively, we calculated 274 

four network metrics to characterize the potential introduction risk of a pest species to a country (i.e., 𝐼𝑗): node in-275 

strength, betweenness centrality, and eigenvector centrality. These network metrics were important for pest or 276 

pathogen transmission in epidemic network (61-63). 277 

Our geographic risk analysis on the potential (re)introduction of the four invasive species focused on 278 

individual networks of the reported international trade of specific agricultural commodities. For PSTVd, we 279 

analyzed networks of international trade of potato seeds (i.e., potato tubers for 2005-2019) and planting material 280 

of Brugmansia (2023). For RSIIB-1, we evaluated the international trade of potato seeds, tomato fruits, pepper 281 

fruits (2005-2019), and geranium planting materials (2023). For ToBRFV, we built individual networks of 282 

international trade of tomato fruits (2005-2019), tomato seeds, and pepper seeds (2023). For Phthorimaea 283 

absoluta, we assessed the international trade network of tomato fruits (2005-2019). These target commodities are 284 

important for the international dispersal of the pests of interest, given their reported specific association with the 285 

interception of these pest species (Data S1). We also focused the (re)introduction risk analysis on the international 286 

trade of these fresh crop commodities because of their potential higher likelihood in the geographic diffusion of 287 

these invasive pests, excluding processed agricultural products which may have a negligibly reduced risk. Future 288 

risk analyses could include explicit information on other primary dispersal pathways of these invasives in the 289 

longer term, like the international trade of crop-specific seed and ornamental material. Information on the 290 

international trade of crop-specific seeds or planting material over multiple years is publicly unavailable. We 291 

assumed a reduction in the introduction risk by 10% from countries with market access to the United States and 292 

https://stats.wto.org/
https://www.volza.com/
https://www.fao.org/faostat/en/#data


   

 

   

 

imposed import biosecurity requirements. The list of countries with pest-specific biosecurity regulations is 293 

available in the 2024 Federal Order for U.S. imports of tomato and pepper seeds for ToBRFV, and the 2023 294 

Federal Order for U.S. imports of tomato fruit for P. absoluta. We also focused on the introduction potential of 295 

each pest species associated with commodity imports to the USA and countries in the Caribbean Region, 296 

providing a regional assessment as a pilot experiment (a global analysis for each pest is available in Fig. S1-2). 297 

We used country-level interception data for each pest species as an “independent” dataset to validate the 298 

(re)introduction risk analysis (Data S9). In the (re)introduction risk analyses, we used this data to determine which 299 

agricultural commodities are likely important for the international spread of each pest (Table S5), but we excluded 300 

a large part of the information about pest interceptions in specific countries (unless they were the only report 301 

available for the presence of a pest in a country). We assessed the precision of the (re)introduction risk analysis, 302 

that is, the ratio between the number of countries where the pest has been intercepted on imported agricultural 303 

commodities and introduction risk was non-zero (true positives) and the number of countries where the pest has 304 

been intercepted on imported agricultural commodities. Our analysis had a precision of 1, including all countries 305 

where the pest has been intercepted (Table S7). Using the Kolmogorov-Smirnov test, we also evaluated whether 306 

countries where the pest has been intercepted have a higher (re)introduction risk than any other countries. The KS 307 

test indicates that there is no statistically higher or lower introduction risk in countries where the pest has been 308 

intercepted (Table S7). As expected, the null hypothesis is supported because we included all the information 309 

available for the geographic distribution of each pest in our analysis. Our interpretation is that pest re-introduction 310 

is possible in most countries importing high-risk commodities, given that pest interceptions occurred in countries 311 

having a range of risk values. 312 

Mapping invasion risk based on accessibility to ports and cities 313 

Ports likely play a pivotal role in the (re)introduction of plant pests to a region as they may serve as primary 314 

entry points of pest-associated agricultural commodities (5, 12). Geographic proximity to ports generally 315 

increases the risk of introducing invasive plants, arthropods, and pathogens (5, 28, 64-66) and our SDMs 316 

indicated a potential major role of access to ports in the geographic distribution of each target pest. We thus 317 

assume that accessibility of croplands to ports or urban areas in a region increases (re)introduction risk of plant 318 

pests. While accessibility of croplands to ports may indicate invasion risk associated with the initial destination of 319 

imported commodities in a country, accessibility of croplands to cities may indicate invasion risk associated with 320 

urban agricultural landscapes and the final destination of commodities (67, 68). Specifically, we hypothesized that 321 

invasion risk associated with accessibility to ports and cities occurs in a pattern analogous to species richness 322 

resulting from species-accumulation models, where the cumulative number of species scales in an exponential 323 

pattern with sample size, area, or intensity (69). In our view, invasion risk of cropland locations in a region 324 

increases nonlinearly with accessibility to ports (𝐴𝑝) following 𝐼𝑝 ∝ 1 − exp (−1/𝑙𝑜𝑔(𝐴𝑝)) or with accessibility 325 

to cities (𝐴𝑝) following 𝐼𝑐 ∝ 1 − exp(−1/𝑙𝑜𝑔(𝐴𝑐)), where 𝐼𝑝 and 𝐼𝑐  range from 0 to 1. 326 

For each invasive species, we generated a map combining the joint risk of countries to a pest’s potential 327 

introduction through international trade and the invasion risk given the access of croplands to ports in a country 328 

(𝐼𝑗 × 𝐼𝑝). This resulting map aims to disaggregate the accidental introduction risk of pest species via international 329 

trade (𝐼𝑝) into likely domestic distribution of imported agricultural commodities and their associated pests across 330 

initial entry locations. These maps of invasion risk can be fine-tuned in future geographically explicit evaluations, 331 



   

 

   

 

as domestic distribution of commodity trade and local spread of associated pests may vary geographically among 332 

commodity types (28). Information about origin location, ports of entry, and final city destination of imported 333 

agricultural commodities specifically associated with a target pest species is usually publicly unavailable. 334 

Mapping invasion risk based on multi-host landscape connectivity 335 

Our target invasive pests have a multi-species host range, likely constraining their potential distribution in 336 

regions where a host plant is unavailable [biotic filtering] (70), but increasing pest spread risk if susceptible host 337 

populations are homogeneously and densely distributed in the landscape [facilitation effect] (71-73). Geographic 338 

host distribution is a critical risk factor to account more realistically for biotic interactions in ecological niche 339 

modelling of plant disease (14, 19, 70). We categorized each plant species reported to be naturally infested by a 340 

pest as major or primary host(s) and minor or secondary hosts (Data S2). We assumed that natural secondary host 341 

species play at least a minor role in pest persistence or survival (10, 74). To map the geographic distribution of 342 

multiple natural host species, we used a stacked host distribution modeling approach (14), summing the relative 343 

density of major host(s) and secondary hosts to produce a global map of cumulative host density for each invasive 344 

pest. In these stacked host maps, we considered the potential minor role of secondary host species in pest invasion 345 

risk and potential spread by multiplying their host densities by a tenth (12). For crop species being natural host of 346 

a pest species, our analysis included only locations represented by 3-minute cells having ≥ 4 hectares of cropland 347 

(i.e., a host density threshold of ~0.1%), because we assumed a rare-species advantage against density-dependent 348 

diseases in excluded host locations (71). We then aggregated these resulting maps to a coarser spatial resolution 349 

so that each grid cell represented approximately 55.5 km × 55.5 km at the equator. 350 

Using these global maps of cumulative host density as inputs in the geohabnet R package (75), we evaluated 351 

the host landscape connectivity for each pest species as proposed (32). Geohabnet is a component of the R2M 352 

toolbox for rapid risk assessment to support mitigation of pathogens (www.garrettlab.com/r2m). Geohabnet 353 

estimated the relative likelihood of pest movement (𝜎) between host locations 𝑖 and 𝑗  using two generic gravity 354 

models for species dispersal (76-78): 𝜎𝑖𝑝𝑙 ∝ 𝑐𝑖
𝑘𝑐𝑗

𝑘 (
𝑑𝑖𝑗

111,319.5
)

−𝛽

 for the inverse power-law model and 𝜎𝑛𝑒 ∝355 

𝑐𝑖
𝑘𝑐𝑗

𝑘𝑒
−𝛾(

𝑑𝑖𝑗

111,319.5
)
 for the negative exponential model. In these global dispersal models, potential pest movement 356 

(𝜎𝑖𝑝𝑙 or 𝜎𝑛𝑒) depends not only on the product of relative abundances of susceptible host species in both locations 357 

(𝑐𝑖
𝑘𝑐𝑗

𝑘), but also on the probability of a pest moving between host populations given their physical distance (𝑑𝑖𝑗). 358 

We set 𝑘 =
1

2
 to account for potential nonlinear associations between host density and pest invasion risk (79). We 359 

compiled 𝛽 and 𝛾 dispersal parameter values that were empirically estimated for a diverse set of plant pathogens 360 

and arthropod pests (Data S2). We used this dataset to calculate each dispersal parameter’s first quartile, mean, 361 

median, and third quartile across pest species, representing a parameter space of highly likely pest spread 362 

scenarios. We evaluated these typical parameter values (0.9, 1.5, 1.7, 2.1 for 𝛽 and 0.02, 0.08, 0.36, 0.24 for 𝛾) in 363 

a sensitivity analysis to account for uncertainty in pest movement. Species-specific dispersal parameter values are 364 

unavailable for each target pest. We then built pest invasion networks, where a node represented a host location, 365 

and link weights indicated potential pest movement between host locations (𝜎𝑖𝑝𝑙 or 𝜎𝑛𝑒). We calculated host 366 

landscape connectivity based on six standard network metrics in epidemiology and invasion ecology (22, 38, 61, 367 

80-82): betweenness centrality, closeness centrality, eigenvector centrality, node strength, PageRank centrality, 368 

and sum of nearest neighbors’ node degrees. Here, global maps of invasion risk represent the multi-host landscape 369 

http://www.garrettlab.com/r2m


   

 

   

 

connectivity for a target invasive pest, averaged across two gravity models, eight typical dispersal parameter 370 

values, and six standard network metrics with equal weighting (Code Vignette S1). Host landscape connectivity 371 

indicates the average relative likelihood of an invasive pest potentially spreading from a target host location to all 372 

its functional neighbors in a landscape if the invasive pest reaches the target location. 373 

We assumed separately that pest survival is more likely in areas where the host species richness of a pest is 374 

higher than where only one host species is reported (14). We used georeferenced occurrence data for each pest 375 

species as an independent dataset to validate the multi-host connectivity estimates. We used two metrics to assess 376 

model performance based on presence-only data. First, precision is the ratio between the number of grid cells 377 

where the target pest has been reported present and the multi-host connectivity is nonzero (true positives), and the 378 

number of grid cells where the target has been reported present (true positives + false negatives). Second, we 379 

assessed whether multi-host connectivity is higher in locations where the pest is reported present than elsewhere. 380 

To assess this hypothesis, we conducted an asymptotic two-sample Kolmogorov-Smirnov test. The multi-host 381 

connectivity analyses had good precision (from 0.68 to 0.87; Table S6). The KS test revealed that multi-host 382 

connectivity tends to be higher in locations where the pest is present than elsewhere (p < 0.001, Table S6), 383 

supporting a likely major role of multi-host connectivity in driving the spatial occurrence of each pest. 384 

Computational requirements. Global host landscape connectivity analyses require high-performance computing 385 

resources. For example, each analysis of host landscape connectivity based solely on betweenness centrality in the 386 

Eastern Hemisphere required using 40 CPUs and 80 GB of memory for 110 hours in the University of Florida 387 

HiPerGator. 388 

Code availability. A template for processing R-scripts (source code) of each analysis in this study is publicly 389 

available in GitHub repositories: https://github.com/AaronPlex/pestradenet for international trade networks, 390 

https://github.com/AaronPlex/pestradenet


   

 

   

 

https://github.com/AaronPlex/pest-env-sdm for environment-based SDMs, and 391 

https://github.com/AaronPlex/multi-host-nets for the host connectivity analysis.  392 

Data availability. All unpublished datasets supporting results and reproducibility of this study are publicly 393 

available as supplementary material. All published datasets used in this study are correspondingly cited.  394 

2. Results 395 

Pest introduction risk based on trade networks of agricultural commodities 396 

 397 

Fig. 2. Cumulative potential of (re)introduction for four invasive plant pests. This risk analysis considers international pest-specific 398 
commodity pathways, pest distribution at the country level, major crop host availability at the country level, and accessibility to ports. n 399 
is the number of importing countries with a possible introduction risk through international trade of agricultural commodities. Countries 400 
in grey have no reports of international trade of these commodities. Pest silhouettes are not drawn to scale. 401 

https://github.com/AaronPlex/pest-env-sdm
https://github.com/AaronPlex/multi-host-nets


   

 

   

 

 402 

Fig. 3. Potential geographic spread routes of pathogens and pests through international trade networks in the Caribbean region and 403 
United States. Countries closer to the center of the trade networks have higher risk of pathogen or pest introduction via trade of high-404 
risk crop commodities. Node size indicates the availability of crop species that are hosts of a pest. Pathogen or pest invasion potential and 405 
trade movement potential are relative rankings useful to compare invasion risks within (not between) trade networks. Abbreviations: 406 
ANTI – Antigua and Barbuda, DOM – Dominican Republic, KN – Saint Kitts and Nevis, TT – Trinidad and Tobago, VC – Saint Vincent and the 407 
Grenadines. Pest silhouettes are not drawn to scale. 408 



   

 

   

 

Given resource scarcity, long-term prevention of pest invasions into new host areas is increasingly 409 

challenging for National Plant Protection Organizations (NPPOs). While local sentinel surveillance and invasion 410 

management should continue actively and recursively in pest source regions (Fig. S-4), proactive surveillance 411 

could target potential pest movement among large-scale habitat regions unintendedly mediated by international 412 

trade (Fig. 2). There is a global concern regarding the invasive pests studied here, yet each species lacks a global 413 

risk assessment, except for P. absoluta, which has a global map for climate-based risk. GIRAF identified 414 

candidate hotspot areas with relatively high pest introduction potential based on historical trends in global trade of 415 

pest-associated crop commodities (Fig. 2). If this historical pattern in international trade continues, crop 416 

commodity destinations with a high relative potential of trade-mediated pest introductions globally include 417 

solanaceous crop ecosystems in the USA, Niger, Saudi Arabia and Egypt for PSTVd; Pakistan, Tanzania, Saudi 418 

Arabia, and Senegal for RSIIB-1; Ukraine, United States, Canada, and Kazakhstan for ToBRFV; USA, Canada, 419 

Bahrain, Kuwait, and UAE for P. absoluta (Fig. 2). GIRAF emphasized these countries because they are major 420 

large-scale crop host producers. However, preventing pest introduction via safe international trade poses a broader 421 

challenge. Specifically, international trade networks of crop commodities involve many host-growing countries 422 

potentially acting as commodity destinations (Fig. 2), each pest has a global yet scattered distribution, and many 423 

countries exporting agricultural commodities may serve as possible pest source pools (Fig. 3). Historically, 424 

international trade of specific agricultural commodities has played a major role in the rapid spread of these target 425 

pests across the world (Fig. S1-4). 426 

GIRAF also allows assessing pest introduction potential focused on specific geographic regions. For example, 427 

if the goal is proactive surveillance prioritization in the USA and the Caribbean region, GIRAF identified key 428 

regional hubs in international trade networks where the (re)introduction of each target pest is likely. These 429 

regional hubs consist of host-growing countries that import pest-associated crop commodities from many regions 430 

where a target pest is present. The USA, the Dominican Republic, and Cuba serve as regional trade hubs in this 431 

region, presenting a potential introduction risk for each target pest (Fig. 3). Likewise, Saint Vincent and the 432 

Grenadines, Antigua and Barbuda may act as possible hubs exposed to ToBRFV or P. absoluta (re)introduction. 433 

Lastly, GIRAF distinguished spatially explicit potential movement pathways for each target pest (Fig. 3) among 434 

these large-scale habitat regions. For example, Cuba imported potato seed from nine countries: these international 435 

trade activities represent a high movement potential for RSIIB-1 but a low movement potential for PSTVd (Fig. 436 

3). Similarly, the USA imported tomato commodities from 27 countries: these trade connections provide a 437 



   

 

   

 

possible movement pathway for P. absoluta from Peru, Colombia and Brazil, but they have a low movement 438 

potential for ToBRFV. 439 

Pest invasion risk based on environmental suitability 440 

 441 

Fig. 4. Global risk hotspots for four invasive pests based on an ensemble of spatially implicit and environment-based machine-learning 442 
models. Sample size (n) is the number of historical georeferenced pest outbreak observations (black square outlines) used to train 443 
individual species distribution models. Black pixels are locations where the ensemble model predicted to be environmentally unsuitable. 444 
Pest silhouettes are not drawn to scale. 445 

After a species’ introduction, national early warning systems need to determine the degree and extent to 446 

which the local environment is suitable for establishment and spread of any invasives. In GIRAF, a suitable 447 

environment for pest invasions depends on climatic, edaphic, and hydrological conditions. Here, GIRAF inferred 448 

environmental suitability from a machine learning ensemble model trained on the most comprehensive 449 

compilation of geographically distinct outbreak observations of each target pest in the last century. This 450 

environment-based modelling approach successfully predicted the currently reported georeferenced range of each 451 

target pest (Fig. 4, average model accuracy ranging between 61% and 96% depending on the model used). The 452 

pandemic distribution of these pests calls for a globally coordinated invasion mitigation system that consistently 453 

responds to possible recurring outbreaks in already affected areas and is adapted by biosecurity agencies and plant 454 

industries to regional circumstances. Proactive response should also become routine beyond current invasion 455 



   

 

   

 

hotspots and GIRAF identified these key surveillance targets. The environmentally informed model in GIRAF 456 

provides key spatial predictions beyond reported geographical ranges of each target pest, indicating that some 457 

locations might be environmentally suitable for pest development under current conditions. For each target pest, 458 

these potential environmentally suitable locations with >50% likelihood of invasion include a large area 459 

throughout China, and an eastern region in Australia (Fig. 4). Other possibly suitable areas are specific to each 460 

target pest. For example, Southeastern USA and the US Pacific Coast are likely climatically suitable areas for 461 

RSIIB-1. If these pests are allowed to reach currently uninvaded areas through natural or human-mediated means, 462 

each target pest would have a potential broader geographic range for invasion globally. Preventing further range-463 

expansion of these global pest risks requires (pro)active surveillance programs coordinated by international plant 464 

health communities. 465 

Pest invasion risk based on multi-host landscape connectivity 466 

 467 

Fig. 5. Global risk hotspots for four invasive pests based on multi-host landscape connectivity. Color gradient represents the magnitude 468 
in mean host landscape connectivity of each location, calculated across a highly likely range of dispersal parameters. Global host 469 
community properties include the number of naturally infected host species used for the host connectivity assessment, including 470 
cultivated, weedy and wild species (N) and the land surface area with hosts available measured in million square kilometers (A). Grid cells 471 
in black are locations where host is not reported. Pest silhouettes are not drawn to scale. 472 



   

 

   

 

GIRAF offers an innovative approach to mapping the global distribution of multiple hosts of a target pest 473 

using publicly accessible databases. Previous approaches provided global single-species (usually crop) 474 

assessments and occasionally national multi-species assessments. GIRAF provides a global or local multi-species 475 

connectivity assessment of crops and non-cultivated hosts associated with a target pest. Here, host connectivity 476 

refers to the relative likelihood of spread of a pest between host locations if the pest reaches a target location in 477 

the host landscape, all else being equal. GIRAF quantifies this potential functional host connectivity based on host 478 

availability (structural connectivity) and a highly likely range of pest dispersal parameters (see Methods). 479 

Mapping multi-species connectivity helped us understand possible local spread of each target pest in a realistic 480 

heterogeneous host landscape. This comprehensive approach identified candidate surveillance priorities, from 481 

possible structural geographic barriers where a host is unreported to spatially contiguous host areas and spatially 482 

fragmented host habitats. 483 

Host availability strongly correlates with mean host connectivity (Spearsman’s 𝒓𝒔 = 0.62 for PSTVd, 0.81 484 

for RSIIB-1, 0.65 for ToBRFV and 0.80 for P. absoluta, 𝒑 < 2.2e-16), so highly dense host communities 485 

commonly have high functional connectivity. This pattern is also supported by small differences in ranks for 486 

locations with high host connectivity and high host density (Fig. S10). For example, Europe, Southern Asia, and 487 

China have a homogeneously dense host landscape that is likely to facilitate the local spread of each pest (Fig. 5). 488 

A homogeneously dense host landscape for P. absoluta is available throughout Central and North America (Fig. 489 

5). However, within-continent host communities in the Americas and Africa are spatially fragmented for PSTVd, 490 

RSIIB-1 and ToBRFV. Despite this structurally spatial habitat fragmentation, chances of pest movement due to 491 

functional host connectivity in the Americas and Africa are proportionally greater than if we consider only host 492 

availability. For example, California, Burundi, Rwanda and a western region in Kenya have particularly high 493 

functional host connectivity for PSTVd, RSIIB-1 and P. absoluta. These highly connected host communities are 494 

potentially effective spread paths if the pest reaches these locations. 495 

In the Americas, there is a conterminous host belt throughout the Andes for the potential natural 496 

dissemination of each target pest. Panama is possibly a non-host disconnection for the natural spread of PSTVd, 497 

ToBRFV, and P. absoluta. Nonetheless, a contiguous host landscape in Central America is expected to act as a 498 

structural and functional bridge zone for the potential gradual spread of RSIIB-1 between North America and 499 

South America. Reported host availability is scattered throughout Africa, especially for PSTVd and ToBRFV. 500 

However, a landscape along the northern and eastern border of Nigeria has a high host connectivity for each target 501 

pest (Fig. 5). This host landscape fragmentation in Africa requires a future assessment of unreported host 502 

distribution influencing potential spread of these pests. Considering only croplands substantially underestimated 503 

invasion risk compared to a multi-species host assessment for each target pest. Host species richness was weakly 504 

negatively or positively correlated with functional host connectivity (Spearsman’s 𝒓𝒔 =  –0.04, 𝒑 = 1.486e-13 for 505 

PSTVd; 𝒓𝒔 = 0.31, 𝒑 < 2.2e-16 for RSIIB-1; 𝒓𝒔 = 0.19, 𝒑 < 2.2e-16 for ToBRFV; and 𝒓𝒔 = 0.49, 𝒑 < 2.2e-16 for 506 



   

 

   

 

P. absoluta). We thus expect that cross-species transmission of these pests is more likely in highly connected host 507 

locations, especially if crop ranges spatially overlap with non-cultivated host species.   508 

Pest invasion risk based on a biogeographical multi-dimensional assessment 509 

Each component of GIRAF provides an individualistic invasion risk perspective, and decision-makers can 510 

use each risk factor map individually as a first approximation for a pest’s invasion risk when geographic 511 

information of other ecological factors is lacking. Each component represents a static snapshot of a pest’s 512 

potential geospatial distribution and a dimension of its spatially referenced ecological niche. Trade and 513 

transportation networks are proxies for (re)introduction pressure (long-distance dispersal niche), environmental 514 

suitability may capture environmental requirements of a target invasive (environmental niche), and host landscape 515 

connectivity highlights spatial patterns of a pest’s spread through a landscape of susceptible hosts (trophic niche). 516 

GIRAF reconciles these different geospatial perspectives on a multidimensional analysis of invasion risk, 517 

representing a second ecological approximation of the relative likelihood of a pest’s spread success or the 518 

potential invasion risk posed by a pest (Fig. 6). We applied the biotic, abiotic, and migration (BAM) framework 519 

(7, 14) to generate combined estimates of potential geographic distribution and the likely spread of an invasive 520 

species. Specifically, we considered that geographic locations where high levels of host landscape connectivity, 521 

predicted environmental suitability, and international trade along with accessibility to ports intersect are highly 522 

likely suitable geographic areas for a species’ invasion (Fig. 6). This multicriteria biogeographical approach also 523 

aligns with the three widely recognized components necessary for plant disease development (i.e., environmental 524 

conduciveness, host susceptibility, and pathogen aggressiveness) in a geographical space [landscape 525 



   

 

   

 

epidemiology] (41). To our knowledge, GIRAF is the first pest-specific, use-inspired, and spatially explicit meta-526 

model integrating real-world data on major drivers of pest invasions on global natural and agri-food ecosystems. 527 

 528 



   

 

   

 

Fig. 6. Worldwide pest invasion risk based on a multi-dimensional assessment. In these multivariate choropleth maps, the intensity of 529 
each primary color represents the invasion risk level of a target pest based on environmental suitability (or environmental niche, red 530 
spectrum with low values in the left columns to high values in the right columns of the legend), host landscape connectivity (or trophic 531 
niche, green spectrum with low values in the bottom rows and high values at the top of the legend) and international trade of crop 532 
commodities (or dispersal niche, blue spectrum with low values across the base layer and increasing with layers at the front of the 533 
legend). Grid cells in black indicate areas with no invasion risk (e.g., Antarctica) and pale-yellow grid cells indicate highest-risk areas for a 534 
pest invasion where high levels of the three risk factors overlap. For example, grid cells in orange have a high environmental suitability 535 
and relatively low levels of host connectivity and trade-mediated introduction risk. 536 

By mapping at-risk locations for potential pest spread based on three major ecological risk factors, 537 

GIRAF provides a starting point for global invasion preparedness and spatially explicit surveillance prioritization. 538 

The highest levels of these three major risk factors rarely coincided. Globally, Central Europe, India, and northern 539 

China, where the pests are present, have relatively high levels of each risk factor (Fig. 6). GIRAF allows us to 540 

identify areas where high levels of pairs of risk factors coincided. For example, large areas in the USA have high 541 

(re)introduction risk and high environmental suitability but reported host distribution may be a limiting factor. 542 

Lastly, GIRAF provides a multi-scale lens to account for likely scale-dependent processes in invasion risk. At a 543 

finer spatial resolution, GIRAF revealed better-informed patterns of invasion risk for Florida and surrounding 544 

areas (Fig. 6). For example, northern Florida had moderate levels of each risk factor for each target pest. 545 

Identifying these fine-scale patterns might be difficult in global analyses.  546 

3. Discussion 547 

Protecting plant health from invasive pests is key to holistically safeguarding agroecosystems’ provision 548 

and natural ecosystems’ functioning, especially in co-response to 21st-century global challenges like resource 549 

depletion, plant pandemics, and climate change. GIRAF 1.0 provides critical points for constructing geographic 550 

surveillance and mitigation strategies of species-specific invasive pests. GIRAF 1.0 provides a key advance for 551 

improving pest invasion risk assessments, by integrating four ecologically meaningful drivers of invasive species 552 

spread globally. Specifically, we focused on which, how, and where risk factors may be important for pest 553 

invasions (geographic risk quantification). 554 

Here, GIRAF quantified potential risk hotspots for four pests of global concern, using species-specific 555 

biogeographic models of trade-mediated (re)introduction potential, environmental suitability, and host landscape 556 

connectivity for a contemporary timespan. Our results provide the first quantitative assessment of invasion risk 557 

for plant pests across these geographic factors globally. We provide new evidence that host communities for each 558 

target pest occupy ~33.1-60.8×106 km2 or ~22-37% of Earth's land surface. Europe and Southeast Asia have a 559 

highly suitable environment and high multi-host connectivity for each pest. The global trade networks of high-risk 560 

commodities associated with each target pest include over 100 countries. The USA ranks among the top five 561 

countries with trade-mediated (re)introduction potential, and some regions of this country are environmentally 562 

suitable for pest invasion. 563 

These findings may have high uncertainty for invasion risk of these pests in some regions, where host 564 

availability is not reported, informal trade of planting materials occurs, implemented phytosanitary measures are 565 

not openly accessible, and along international terrestrial borders. Despite these unquantified uncertainties, our 566 

findings call for planning (pro)active responses to and effective plant protection strategies against future pest 567 



   

 

   

 

outbreaks (Fig. 1). These responses include: (1) proactive surveillance should target regions where each pest is 568 

unreported, but which have high invasion risk (Fig.2-4); (2) making international trade networks safe needs 569 

enhanced pest-specific biosecurity in over 100 countries (Fig. 2 and 3); and (3) breaking high host connectivity 570 

for these pests requires regional management efforts, particularly where solanaceous crops geographically overlap 571 

with non-cultivated host species (Fig. 5-6). 572 

Together our findings of widespread invasion risk of each target pest underscore an urgent need for 573 

enhanced invasion and pandemic prevention, preparedness, and response globally. To prevent further 574 

introduction, establishment, and local spread of these pests of global concern, long-term transnational strategies 575 

for (pro)active surveillance and risk mitigation are the primary candidate components for reinforcing the currently 576 

nationally coordinated plant health systems (10, 25). Effective management of these invasive pests also needs 577 

intersectoral support from private sectors (food security crops and ornamental industries), natural ecosystem 578 

conservation, and NPPOs.  579 

Widespread implementation of GIRAF 1.0 depends on readily available, interoperable pest information 580 

systems and timely financial support (10), motivating countries to build and share local databases (e.g., spatial 581 

estimates of informal domestic trade, crop yield losses, or measured area invaded by a pest). GIRAF 1.0 is yet 582 

simplistic, compared with the complex reality of biological invasions (70), lacking pest species interactions with 583 

natural enemies, genetic population evidence, inherent stochasticity, and fine-scale spatiotemporal dynamics. 584 

Invasion risk frameworks like GIRAF generally lack explicit quantitative impact assessments on multifaceted 585 

outcomes globally, such as crop yield losses (74), agriculture profit reduction, plant biodiversity losses, or 586 

environmental impacts. These research frontiers in pest information systems hinder any invasion risk framework 587 

from providing timely interventions for real-time geographic monitoring prioritization, in the context of allocating 588 

scarce operating resources for plant health protection. GIRAF 2.0 should tackle these grand challenges in invasion 589 

science as biogeographic pest information systems keep improving periodically. We hope GIRAF 1.0 serves the 590 

scientific communities as a starting reference model to design future global risk assessments for thousands of 591 

potential invasive species devastating Earth’s plant ecosystems. 592 
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